48,232 research outputs found

    Adaptive control of CO2_2 bending vibration: deciphering field-system dynamics

    Full text link
    We combined adaptive closed-loop optimization, phase-shaping with a restricted search space and imaging to control dynamics and decipher the optimal pulse. The approach was applied to controlling the amplitude of CO2_2 bending vibration during strong-field Coulomb explosion. The search space was constrained by expressing the spectral phase as a Taylor series, which generated pulses with characteristics commensurate with the natural physical features of this problem. Optimal pulses were obtained that enhanced bending by up to 56% relative to what is observed with comparably intense, transform limited pulses. We show that (1) this judicious choice of a reduced parameter set made unwrapping the dynamics more transparent and (2) the enhancement is consistent with field-induced structural changes to a bent excited state of CO22+_2^{2+}, which theoretical simulations have identified as the state from which the explosion originates.Comment: 4 pages, 3 figures, 1 table, added reference

    Summary of 1978 Southeastern Virginia Urban Plume study: Aircraft results for carbon monoxide, methane, nonmethane hydrocarbons, and ozone

    Get PDF
    The characteristics of the Southeastern Virginia urban plume were defined with emphasis on the photon-oxidant species. The measurement area was a rectangle, approximately 150 km by 100 km centered around Cape Charles, Virginia. Included in this area are the cities of Norfolk, Virginia Beach, Chesapeake, Newport News, and Hampton. The area is bounded on the north by Wallops Island, Virginia, and on the south by the Hampton Roads area of Tidewater Virginia. The major axis of the rectangle is oriented in the southwest-northeast direction. The data set includes aircraft measurements for carbon monoxide, methane, nonmethane hydrocarbons, and ozone. The experiment shows that CO can be successfully measured as a tracer gas and used as an index for determining localized and urban plumes. The 1978 data base provided sufficient data to assess an automated chromatograph with flame ionization detection used for measuring methane and nonmethane hydrocarbons in flight

    Resonant Tunneling in Truly Axial Symmetry Mn12 Single-Molecule Magnets: Sharp Crossover between Thermally Assisted and Pure Quantum Tunneling

    Full text link
    Magnetization measurements of a truly axial symmetry Mn12-tBuAc molecular nanomagnet with a spin ground state of S = 10 show resonance tunneling. This compound has the same magnetic anisotropy as Mn12-Ac but the molecules are better isolated and the crystals have less disorder and a higher symmetry. Hysteresis loop measurements at several temperatures reveal a well-resolved step fine-structure which is due to level crossings of excited states. All step positions can be modeled by a simple spin Hamiltonian. The crossover between thermally assisted and pure quantum tunneling can be investigated with unprecedented detail.Comment: 5 pages, 6 figure

    Variation in actual relationship among descendants of inbred individuals

    Get PDF
    In previous analyses, the variation in actual, or realized, relationship has been derived as a function of map length of chromosomes and type of relationship, the variation being greater the shorter the total chromosome length and the coefficient of variation being greater the more distant the relationship. Here, the results are extended to allow for the relatives' ancestor being inbred. Inbreeding of a parent reduces variation in actual relationship among its offspring, by an amount that depends on the inbreeding level and the type of mating that led to that level. For descendants of full-sibs, the variation is reduced in later generations, but for descendants of half-sibs, it is increased

    Co-rich cobalt platinum nanowire arrays: effects of annealing

    Get PDF
    The effects of annealing on the crystal structure and magnetic properties of Co-rich cobalt platinum nanowire arrays embedded in anodic aluminium oxide membranes have been investigated. For this purpose, a rapid thermal annealing to temperatures of 300 °C to 800 °C has been used. Transmission electron microscopy and scanning electron microscopy show that the nanowires have a mean diameter of 14 nm and an estimated wire density of 7.8×1010 cm-2. From x-ray diffraction patterns, we find that the nanowires are hcp and possess a preferred texture in which the c axis of the grains tends to lie along the major axis of the wire. Vibrating sample magnetometry measurements indicate that the easy axis is along the nanowire axis direction. Hysteresis loops, saturation magnetization, squareness ratio (Mr/Ms), and coercivity (perpendicular and parallel to the nanowire axis) have all been investigated as a function of the annealing temperature (TA). Coercivity parallel to the wire axis first increases with TA, attains a maximum at 600 °C (which is 150% of the as-deposited sample), and then decreases. By contrast there is relatively little change in the coercivity measured perpendicular to the wires. The saturation magnetization for the as-deposited sample is 1360 emu/cc and remains almost constant for annealing temperatures up to 500 °C: for TA>500 °C it decreases significantly. The maximum (Mr/Ms) ratio attained in this study is 0.99, the highest value reported thus far for cobalt platinum alloy nanowires. The data suggest that these materials are potential candidates for high-density magnetic recording media

    THEORETICAL ASPECTS OF WITHIN HERD SELECTION IN DAIRY CATTLE

    Get PDF

    Atmospheric environment for Space Shuttle (STS-41D) launch

    Get PDF
    Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments

    Atmospheric environment for Space Shuttle (STS-41G) launch

    Get PDF
    Selected atmospheric conditions that were observed near Space Shuttle STS-41G launch time on October 5, 1984 at Kennedy Space Center in Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual obsrvations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape consisting of wind and thermodynamic parameters versus altitude for STS-41G vehicle ascent was constructed. The STS-41G ascent atmospheric data tape was constructed. The STS-41G ascent atmospheric data tape was constructed by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments

    High Reynolds number tests of a NASA SC(3)-0712(B) airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    Get PDF
    A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.60 to 0.80. These variables provided a Reynolds number range from 4,400,000 to 40,000,000 based on a 15.24-cm (6.0-in.) airfoil chord. This investigation was designed to test a NASA advanced-technology airfoil from low to flight-equivalent Reynolds numbers, provide experience in cryogenic wind tunnel model design and testing techniques, and demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics. Also included are remarks on the model design, the model structural integrity, and the overall test experience
    corecore